Pigeonhole Principle

This is another shot from the tool cutting factory that we visited at the end of Friday, a time where we were getting some great light coming in through the windows on one side of the building.

The place was huge and, as I’ve suggested previously, was pretty ripe with pigeons – though thankfully in this location there seemed to be more of them alive than dead. I had to place the stool into the scene myself, and this is where I made the focus of the image. I liked that the boxes in the background still had some old paper notes attached, simply stating ‘Butt’ or ‘Gauge’ which I believe may be two types of handles that were made here, perhaps.

Thinking of a title for this particular post was one of the more simple ones for me this time, what with the boxes all lined up and the amount of pigeon droppings in the area, it was only natural that I would take on the title of Dirichlet’s principle for this post as this is what I notice visually in the image. For those unfamiliar with this principle, it essentially states that if items (n) are put into pigeonholes (m) and whereby n > m, then at least one of the pigeonholes must contain more than one of the item.

I think I first became aware of this principle when asked the classic problem solver ‘if you’re in a dark room and have a drawer containing 10 blue socks and 10 black socks, how many socks do you blindly need to pull out of the drawer to have a matching pair?’

One thought on “The Pigeonhole Principle”

Comments are closed.